Capto-dative Substitution and Cyclopropane Geometry. Part 2. ${ }^{1} \boldsymbol{X}$-Ray Structure of cis-1,2-Dicyano-1,2-bis(phenylthio)cyclopropane, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{\mathbf{2}}$

Bernard Tinant, Jean-Paul Declercq, and Maurice Van Meerssche*
Laboratoire de Chimie Physique et de Cristallographie, Université de Louvain, Place Louis Pasteur, 1 B-1348 Louvain-la-Neuve, Belgium

The crystal and molecular structure of the title compound has been determined from X-ray diffraction data using direct methods and least-squares refinement. The crystals are monoclinic, space group $P 2_{1} / n$, $Z=4, a=17.775(9), b=6.965(4), c=12.994(5) \AA, \beta=101.57(4)^{\circ}$. Using 1507 independent reflections with $I \geqslant 2.5 \sigma(/)$ the structure was refined to $R=0.046$ and $R_{w}=0.054$. The ring bondlengths are very similar to those observed in 2-t-butylthio-1-r,2-t-dicyano-1-phenylthiocyclopropane. This confirms electron-density transfer from cyclopropyl to the substituents in capto-dative substituted cyclopropanes. The structure of the trans isomer has been also determined but it appears to be disordered.

The structure of the title compound has been investigated as part of a study of capto-dative ($c d$) (here $c=\mathrm{CN}, d=\mathrm{SR}$) substituent effects on cyclopropane geometry. Recently we have reported the structures of three $c d$ - or $c c$-substituted cyclopropanes. We have shown that in these derivatives the distal ring bond, opposite to the substituted carbon atom, is shortened and vicinal bonds lengthened. ${ }^{1}$ In order to see how the configuration of the substituents can influence the ring bondlength pattern, we decided to compare the geometries of cisand trans-1,2-dicyano-1,2-bis(phenylthio)cyclopropane. Unfortunately, we found a disordered structure for the trans isomer and the ring bond-distances that we determined are of too poor a precision to be useful in a comparative analysis. \dagger Nevertheless, we compared the structure of the cis isomer with that 2-t-butylthio-1-r,2-t-dicyano-1-phenylthiocyclopropane for which the configuration of the bulky SR groups was trans and for which the electronic effects of t-butylthio- and phenylthiosubstituents are similar. ${ }^{1}$

Experimental

The compound was recrystallized from ether-light petroleum to give colourless parallelepipeds. Crystal data: $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{2}$, $M=308.43$, monoclinic, space group $P 2_{1} / n, a=17.775(9), b=$ 6.965(4), $c=12.994(5) \AA, \beta=101.57^{\circ}, U=1576.1 \AA^{3}, D_{c}=$ $1.30 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$. Mo- K_{α} radiation, $\lambda=0.71069 \AA, \mu=3.25$ cm^{-1}.

The unit cell parameters and their standard deviations were obtained by a least-squares best fit to the setting angles of 15 reflections with values of 2θ between 5 and $20^{\circ} ; 2340$ independent reflections were collected on a Syntex P2 diffractometer using the ω scan mode and graphitemonochromatized Mo- K_{α} radiation. Only 1507 reflections with $I \geqslant 2.5 \sigma(I)$ were conserved for the refinement of the structure. Lorentz and polarization corrections were applied but no absorption corrections were made.

The structure was solved by the direct MULTAN-80 method and refined by full-matrix least-squares analysis first with

[^0]Table 1. Atomic co-ordinates ($\times 10^{4}$) and equivalent temperature factors $\left(\AA^{2}\right)$

$$
B_{\mathrm{eq}}=\frac{8}{3} \pi^{2} \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \vec{a}_{i} \vec{a}_{j}
$$

Atom	x	y	z	$B_{\text {eq }}$
$\mathrm{S}(1)$	$4865(1)$	$2003(2)$	$8725(1)$	4.14
$\mathrm{~S}(2)$	$5075(1)$	$-2687(2)$	$8048(1)$	4.14
$\mathrm{C}(1)$	$4903(2)$	$1315(6)$	$7411(3)$	3.43
$\mathrm{C}(2)$	$5021(2)$	$-814(6)$	$7102(3)$	3.47
$\mathrm{C}(3)$	$5657(3)$	$636(7)$	$7209(4)$	3.88
$\mathrm{C}(4)$	$4415(3)$	$2423(7)$	$6593(4)$	4.35
$\mathrm{~N}(1)$	$4025(3)$	$3240(8)$	$5954(4)$	6.59
$\mathrm{C}(5)$	$4626(3)$	$-1317(7)$	$6060(4)$	4.17
$\mathrm{~N}(2)$	$4295(3)$	$-1737(8)$	$5250(4)$	6.04
$\mathrm{C}(6)$	$3868(2)$	$1789(7)$	$8733(3)$	3.82
$\mathrm{C}(7)$	$3588(3)$	$164(8)$	$9136(4)$	4.54
$\mathrm{C}(8)$	$2829(3)$	$71(10)$	$9201(5)$	5.70
$\mathrm{C}(9)$	$2353(3)$	$1565(11)$	$8872(4)$	5.77
$\mathrm{C}(10)$	$2627(3)$	$3174(10)$	$8472(4)$	5.60
$\mathrm{C}(11)$	$3386(3)$	$3310(9)$	$8405(4)$	4.67
$\mathrm{C}(12)$	$5924(2)$	$-3844(6)$	$7869(3)$	3.53
$\mathrm{C}(13)$	$6045(3)$	$-4437(8)$	$6898(4)$	4.68
$\mathrm{C}(14)$	$6716(3)$	$-5340(8)$	$6808(5)$	5.28
$\mathrm{C}(15)$	$7251(3)$	$-5725(8)$	$7694(6)$	5.56
$\mathrm{C}(16)$	$7148(4)$	$-5190(9)$	$8644(5)$	5.65
$\mathrm{C}(17)$	$6486(3)$	$-4211(7)$	$8746(4)$	4.82

isotropic and then with anisotropic temperature factors using SHELX-76. ${ }^{3}$ Hydrogen atoms were located from a difference Fourier synthesis after the sixth refinement cycle at $R=0.057$. Three further cycles with common isotropic temperature factors, $B=3.95 \AA^{2}$, for the hydrogen atoms were performed. In this final stage a weighting scheme $w=1 /\left(\sigma^{2}+0.01114 F^{2}\right)$ was applied. The final R value was 0.046 and $R_{w} 0.054$, for 1507 reflections. Positional co-ordinates and equivalent isotropic thermal parameters \ddagger are given in Table 1.

Discussion

Figure 1 is a stereoscopic view of the molecule, showing the numbering of the atoms; Figure 2 shows the packing in the unit cell. ${ }^{5}$ Bond distances, angles, and selected torsion angles are given in Tables 2-4.

The geometry of the molecule is very similar to that observed for 2 -t-butylthio-1-r,2-t-dicyano-1-phenylthiocyclopropane. ${ }^{1}$

[^1]

Figure 1. Stereoscopic view of the compound cis-1,2-dicyano-1,2-bis(phenylthio)cyclopropane ${ }^{4}$

Figure 2. Stereoscopic view showing the unit-cell packing ${ }^{4}$

Table 2. Bond distances (\AA)

$\mathrm{S}(1)-\mathrm{C}(1)$	$1.787(4)$	$\mathrm{C}(6)-\mathrm{C}(11)$	$1.375(7)$
$\mathrm{S}(1)-\mathrm{C}(6)$	$1.781(4)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.370(7)$
$\mathrm{S}(2)-\mathrm{C}(2)$	$1.782(4)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.355(9)$
$\mathrm{S}(2)-\mathrm{C}(12)$	$1.767(4)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.365(9)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.561(6)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.372(7)$
$\mathrm{C}(1)-\mathrm{C}(3)$	$1.493(6)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.385(6)$
$\mathrm{C}(1)-\mathrm{C}(4)$	$1.453(6)$	$\mathrm{C}(12)-\mathrm{C}(17)$	$1.380(7)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.501(6)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.374(8)$
$\mathrm{C}(2)-\mathrm{C}(5)$	$1.439(7)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.364(8)$
$\mathrm{C}(4)-\mathrm{N}(1)$	$1.123(6)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.336(8)$
$\mathrm{C}(5)-\mathrm{N}(2)$	$1.136(6)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.388(8)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.381(7)$		

Table 3. Bond angles (${ }^{(}$)

$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(6)$	$102.3(2)$	$\mathrm{S}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$120.3(4)$
$\mathrm{C}(2)-\mathrm{S}(2)-\mathrm{C}(12)$	$100.0(2)$	$\mathrm{S}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	$119.5(4)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$122.2(3)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$	$120.0(5)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(3)$	$117.4(3)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$119.7(5)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	$58.9(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.3(6)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(4)$	$115.1(3)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.2(5)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(4)$	$114.1(4)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120.7(5)$
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(4)$	$117.7(4)$	$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	$119.1(6)$
$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$120.6(3)$	$\mathrm{S}(2)-\mathrm{C}(12)-\mathrm{C}(13)$	$123.3(4)$
$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.5(3)$	$\mathrm{S}(2)-\mathrm{C}(12)-\mathrm{C}(17)$	$118.1(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$58.3(3)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$	$118.6(4)$
$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{C}(5)$	$114.8(3)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$120.7(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(5)$	$114.1(3)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$119.2(5)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(5)$	$117.8(4)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$121.6(6)$
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$62.8(3)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$120.0(6)$
$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{N}(1)$	$178.2(6)$	$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	$119.9(5)$
$\mathrm{C}(2)-\mathrm{C}(5)-\mathrm{N}(2)$	$177.7(5)$		

Table 4. Selected torsion angles $\left({ }^{\circ}\right)$

$C(6)-S(1)-C(1)-C(2)$	-90
$C(6)-S(1)-C(1)-C(3)$	-158
$C(6)-S(1)-C(1)-C(4)$	56
$C(1)-S(1)-C(6)-C(7)$	98
$C(1)-S(1)-C(6)-C(11)$	-130
$C(12)-S(2)-C(2)-C(1)$	-61
$C(12)-S(2)-C(2)-C(3)$	87
$C(12)-S(2)-C(2)-C(5)$	-52
$C(2)-S(2)-C(12)-C(13)$	130
$C(2)-S(2)-C(12)-C(17)$	3
$S(1)-C(1)-C(2)-S(2)$	146
$S(1)-C(1)-C(2)-C(5)$	-143
$C(4)-C(1)-C(2)-S(2)$	0
$C(4)-C(1)-C(2)-C(5)$	

Of particular interest is the cyclopropyl ring-bond pattern: all bond lengths agree to within 2σ (Table 5). The distances C (ring)- S and C (phenyl)-S and the angle C (ring)- $\mathrm{S}-\mathrm{C}$ (phenyl) are also in perfect agreement with the values found in 2-t-butylthio-1-r,2-t-dicyano-1-phenylthiocyclopropane. It can thus be concluded that the configuration of the bulky SR substituents has no effect on the ring bond-lengths.

As for other $c d$-substituted cyclopropanes, we observe a very long $\mathrm{C}(1)-\mathrm{C}(2)$ bond. In fact it results from distal bond shortening and vicinal bond lengthening. This situation is the same as that observed for π-acceptor substituents. ${ }^{5.6}$ Electron density is transfered from the cyclopropyl ring to the substituents.

Table 5. Comparison of ring bond-lengths (\AA) between cis-1,2-dicyano-1,2-bis(phenylthio)cyclopropane (I) (this work) and 2-t-butylthio-1-r,2-t-dicyano-1-phenylthiocyclopropane (II) ${ }^{1}$

Bond	(I)	(II)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.561(6)$	$1.557(5)$
$\mathrm{C}(1)-\mathrm{C}(3)$	$1.493(6)$	$1.507(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.501(6)$	$1.510(5)$
Mean	$1.518(4)$	$1.525(3)$

Acknowledgements

We thank Dr. A. De Mesmaecker and W. Masamba of the Laboratory of Organic Chemistry of this University for providing the sample and valuable discussions.

References

1 B. Tinant, S. Wu, J. P. Declercq, M. Van Meerssche, A. De Mesmaeker, W. Masamba, R. Merenyi, and H. G. Viehe, preceding paper.
2 P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, M. M. Woolfson, G. Germain, and J. P. Declercq, MULTAN-80, A System of Computer Programs for the Automatic Solution of Crystal Structures from X Ray Diffraction Data, Universities of York and Louvain-la-Neuve, Belgium, 1980.
3 G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, University of Cambridge, 1976.
4 S. Motherwell and W. Clegg, PLUTO, University of Cambridge, 1970.
5 F. H. Allen, Acta Crystallogr., 1980, B36, 81.
6 N. Ramasubbu, J. Rajaram, and K. Venkatesan, Acta Crystallogr., 1982, B38, 196.

[^0]: \dagger The structure was solved by MULTAN -80^{2} and refined by SHELX76 program ${ }^{3}$ on the basis of 1181 reflections for which $I \geqslant 2.5 \sigma(I)$. Data were collected in the same way as the cis isomer. Two positions, with occupation factors 0.53 and 0.47 , nearly perpendicular to each other, were found for the cyclopropane ring. The final R value is 0.046 . Standard deviations of the bond lengths are in the range 0.015-0.022 \AA. Crystal data: $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{2}, M=308.43$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$; cell dimensions $a=9.175(4), b=14.044(7), c=12.126(5) \AA, U$ $=1562.5 \AA^{3}, Z=4$. Co-ordinates and geometrical parameters are available from the editorial office.

[^1]: \ddagger Lists of structure factors are available from the editorial office on request.

